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Abstract.—Providing comprehensive, informative, primary, research-grade biodiversity information represents 
an important focus of biodiversity informatics initiatives. Recent efforts within Ghana have digitized >90% of 
primary biodiversity data records associated with specimen sheets in Ghanaian herbaria; additional herbarium 
data are available from other institutions via biodiversity informatics initiatives such as the Global Biodiversity 
Information Facility. However, data on the plants of Ghana have not as yet been integrated and assessed to 
establish how complete site inventories are, so that appropriate levels of confidence can be applied. In this study, 
we assessed inventory completeness and identified gaps in current Digital Accessible Knowledge (DAK) of the 
plants of Ghana, to prioritize areas for future surveys and inventories. We evaluated the completeness of 
inventories at ½° spatial resolution using statistics that summarize inventory completeness, and characterized 
gaps in coverage in terms of geographic distance and climatic difference from well-documented sites across the 
country. The southwestern and southeastern parts of the country held many well-known grid cells; the largest 
spatial gaps were found in central and northern parts of the country. Climatic difference showed contrasting 
patterns, with a dramatic gap in coverage in central-northern Ghana. This study provides a detailed case study of 
how to prioritize for new botanical surveys and inventories based on existing DAK. 
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Biodiversity informatics may be defined as the 

application of information technologies to the 
management, algorithmic exploration, analysis, and 
interpretation of primary data regarding life, with a 
particular focus at the species level of organization 
(Soberón and Peterson, 2004). It is a rather new 
field, with the earliest citation of the term only 17 
years ago (Schalk, 1998). The most important 
biodiversity information centers on primary data, 
such as records of occurrences of species 
(particularly when vouchered by specimens), 
although many secondary sources (e.g., atlases, 
species accounts, distribution maps) exist as well 
(Costello et al., 2013). Such data have accumulated 
over centuries, but only relatively recently have they 
been converted into digital formats (Guralnick et al., 
2007) and shared openly via data portals (Graham et 
al., 2004). 

Major activities in biodiversity informatics are 
currently data-centered, focused in three areas: (i) 
data extraction and capture, (2) data compilation and 
serving, and (3) data display and visualization 
(Peterson et al., 2010). The past two decades have 
seen advances and improvements in information 
technology (e.g. large-capacity electronic storage 
media, Internet and data portals, distributed database 

technology); development of efficient data digitiza-
tion workflows; changes in policies of owners of 
primary biodiversity data (e.g., see large-scale 
initiatives toward digitization of specimen data in 
Naturalis Biodiversity Centre, Leiden, and Muséum 
National d'Histoire Naturelle (MNHN), Paris), as 
well as establishment of global and regional 
biodiversity information initiatives (e.g., Global 
Biodiversity Information Facility, GBIF; Atlas of 
Living Australia, ALA). These initiatives have 
contributed to massive accumulation and serving of 
primary biodiversity data records via the Internet: 
e.g., GBIF currently serves >648M primary data 
records on its data portal (accessed 13 May 2016). 
However, this forward progress could be threatened 
if the data do not prove sufficiently useful to 
biodiversity researchers, managers, and decision 
makers (Peterson et al., 2010). 

Primary biodiversity data have myriad 
applications, providing an information base that is 
crucial to addressing challenges of sustainable 
development and decision-making about natural 
resources and environments (Chapman, 2005; 
Sousa-Baena et al., 2013). Digital Accessible 
Knowledge (DAK) regarding biodiversity comprises 
primary data records that are in digital format, 
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Figure 1. Graphs showing accumulation of records of Ghanaian plants through time (a) years, and 
(b) during the year.  
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accessible globally without cost, and integrated with 
the broader university of such data (Sousa-Baena et 
al., 2013). Some exciting examples of uses of DAK 
exist, including for prioritizing areas for conserva-
tion, assessing geographic potential for species 
invasions, and understanding ecological and evolu-
tionary processes (e.g., Mora et al., 2008; Nakamura 
& Soberón, 2008).  

In Ghana, significant efforts have been invested 
in digitization of and providing access to primary 
biodiversity data on the plants of the country. 
Although the National Biodiversity Strategy for 
Ghana estimated 3227 plant species (2974 
indigenous and 252 introduced) in Ghana (Ministry 
of Environment and Science, 2002), no consensus 
exists on how many plant species occur in the 
country. Still, DAK on the plants (including fungi 
and algae that are traditionally studied in the field of 
botany) of Ghana is relatively large, based on >90% 
of primary biodiversity data records derived from 
specimens in Ghanaian herbaria, plus data from 
other institutions served through biodiversity 
informatics initiatives such as GBIF. Data on plants 
of Ghana have not been integrated and assessed to 
establish how complete are site inventories across 
the country, so that appropriate levels of confidence 
can be applied; these gaps in knowledge affect 
directly the fitness-for-use of the data (Otegui et al., 
2013). As a consequence, this study undertook 
detailed assessment of DAK on plants of Ghana to 
identify and highlight gaps in knowledge.  
 

METHODS 
Data were obtained from two major sources: (1) 

a BRAHMS database on plants of Ghana that 
includes data associated with plant specimens in the 
collections of the University of Ghana, Resource 
Support Management Centre (RSMC) of Ghana 
Forestry Commission, Aburi Botanic Gardens, and 
Centre for Scientific Research into Plant Medicine 
(CSRPM), Ghana 1  and (2) records of plants 
collected from Ghana downloaded from the GBIF 
data portal (accessed 11 January 2015). The 
database on plants of Ghana included a total of 
53,509 records captured from Ghanaian herbarium 
specimen sheets, including 10,765 records of 
Ghanaian plants from University of Wageningen 
(WAG). The GBIF data contributed a further 9673 
records after cleaning (see below).  

																																																								
1 http://herbaria.plants.ox.ac.uk/bol/.  

Data were cleaned via an iterative series of 
inspections and visualizations designed to detect and 
document inconsistencies. First, we created lists of 
unique names in each dataset in Microsoft Excel, 
and inspected them for repeated versions of the same 
taxonomic concepts: misspellings, name variants, 
different versions of authority information, etc. Such 
repeated name variants were flagged, checked via 
independent sources, and corrected to produce single 
scientific names that correctly referred to single 
taxa. Second, we checked for geographic coordi-
nates that fell outside of the country, but that were 
referred to it. Next, within the country, we checked 
for consistency between textual description of 
regions (equivalent to provinces or states in other 
countries) and geographic coordinates. In each case, 
where possible, we corrected the data record; where 
no clear correction was possible, we discarded data, 
recording data losses at each step in the cleaning 
process. Lastly, we discarded data records for which 
information on year, month, or day of collection was 
lacking; we created a unique ‘stamp’ of time as 
year_month_day. 

We aggregated point-based occurrence data to 
½° spatial resolution grid across the country. This 
choice of spatial resolution was the product of an 
analysis balancing benefits of aggregating data (e.g., 
larger sample sizes) versus disadvantages (e.g., loss 
of spatial resolution across larger areas). The 
procedure consists of examining the relative change 
in area-adjusted variance of the data with increasing 
grid-cell size, and selecting the finest resolution at 
which the trend of the slope of the overall variance 
versus area curve changed most (Ariño et al., in 
prep.); it is similar to the concept of selecting the 
largest sample size beyond which no significant 
increase in diversity is expected (Ariño et al. 2008).  

In this study, a ½° spatial resolution offered the 
best balance between spatial resolution and 
inventory completeness, and was consistent with the 
spatial resolution used in a previous analysis of 
Brazilian plants (Sousa-Baena et al. 2013) and wild 
palms of Benin (Idohou et al. 2015). We produced 
aggregation grid shapefiles in the Vector Grid 
module of QGIS, version 2.4, added the coarse-
resolution grid identification codes to each 
occurrence datum, and aggregated occurrence data 
into coarse-resolution aggregation squares. In Excel, 
we explored relations between species identity, time, 
and aggregation grid-square. We calculated (1) the 
total number of records available from each grid 
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Figure 2. Chronhorogram showing temporal course of accumulation of records of Ghanaian plants. 
Radial dimension shows year of collection, and angle indicates day of the year. Color of dots: black 
= no records; a ramp of colors indicates numbers of records, from blue = few to red = many. 
 
 

 
Figure 3. Summary of distances to nearest road for the available DAK for Ghanaian plants (gray 
bars) and for 5000 random points across the country. The concentration of the DAK along roads 
(i.e., within 1.1 km of roads) compared to random patterns across the country is clear.  
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square (termed N); (2) the total number of distinct 
species recorded from each grid square (Sobs); and 
(3) the number of species detected on one date only 
(a), and (4) the number of species detected on two 
dates only (b). Via equations provided by Chao 
(1987), we calculated the expected number of 
species (Sexp), as 

 
𝑆!"# = 𝑆!"# +

!!

!!
 , 

 
and inventory completeness (C) as C = Sobs / Sexp. We 
then explored plots of C versus N (Hortal et al. 
2007) to assess appropriate and adequate definitions 
of relatively completely versus incompletely 
inventoried grid squares—we used criteria of C ≥ 
0.4 and N ≥ 1000 as final definitions of well-
inventoried areas.  

Once we had established criteria for which grid 
squares could be considered as well-sampled, in 
QGIS, we linked the table with the grid square 
statistics (i.e., N, Sobs, Sexp, C) to the aggregation 
grid, and saved this file as a shapefile. Applying the 
criteria for ‘well-sampled,’ we created a shapefile of 
well-sampled grid squares, which we in turn 
converted to binary-valued (0 = not well-sampled, 1 
= well-sampled) raster (geotiff) format using custom 
scripts in R (R Core Team 2014). This raster 
coverage was the basis for our identification of gaps, 
as follows. 

We used the Proximity (Raster Distance) 
function in QGIS to summarize geographic distance 
across the country to the nearest well-sampled area. 
To create a parallel view of environmental 
difference from well-sampled areas, we plotted 5000 
random points across the country, and used the Point 
Sampling Tool in QGIS to link each point to the 
geographic distance raster, and to raster coverages 
(2.5’ spatial resolution) summarizing annual mean 
temperature and annual precipitation drawn from the 
WorldClim climate data archive (Hijmans et al. 
2005).  

We exported the attributes table associated with 
the random points, and analyzed further in Microsoft 
Excel. We first standardized the values of each 
environmental variable to the overall range of the 
variable as (xi – xmin) / (xmax - xmin), where xi is the 
particular observed value in question, thus rescaling 
the two variables on the same magnitude of overall 
variation. We then created a matrix of Euclidean 
distances in the two-dimensional climate space, 

relating all of the points with a geographic distance 
>0 (see above) to all of the points with geographic 
distance of zero. The latter represent points falling in 
well-sampled regions, whereas the former are 
scattered across the entire region; the points in well-
sampled regions were assigned (by definition) 
environmental distances of zero. Finally, the 
environmental distances were imported into QGIS, 
and linked back to the random points shapefile. 
 

RESULTS 
The DAK of plants of Ghana consisted of a total 

of 38,400 cleaned and geo-referenced data records 
covering the period 1830-2012. Number of records 
per year ranged between 1 and 241, with an average 
of 46.2 data records per year; ~66% of the records 
were from the period 1950–1977 (Figure 1). 
Seasonal patterns in the records showed that most 
records were from the dry season (October to 
December), whereas the fewest records were from 
the rainy season (June to August; Figure 1). The 
chronological and seasonal pattern in data records 
can be visualized via the chronhorogram in Figure 2: 
we observed a rapid increase in numbers of data 
records between 1940 and 1980, and decreasing 
numbers of records thereafter.  

The data showed an overwhelming tendency 
towards concentration of records in southern Ghana. 
Points of access (roads and rivers) were clearly 
visible in the spatial distribution of records, and 
indeed the DAK was significantly concentrated 
close to roads compared to random points (Figure 3). 
Total number of grid cells across Ghana for ½° 
resolution was 92; all held data and about 13% were 
classified as well-known sites. Plots of C against 
number of records per grid cell showed sample-size 
dependency in the range of 500-1000 records 
(Figure 4); hence, we defined well-sampled sites as 
those having ≥1000 records and C ≥ 0.4, because 
stricter criteria would identify massive swaths of 
territory as not-well-sampled (see Sousa-Baena 
2013).  

Generally, well-known grid cells were concen-
trated in the southwestern and southeastern areas of 
the country, and the largest gaps were in the west-
central and northeastern parts of the country (Figures 
5 and 6). Climatic conditions are diverse in Ghana, 
with more homogenous climates in the south 
compared to those of the central and northern parts 
of the country; distinct climatic conditions exist in 
the northern and northwestern areas of the country. 
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Figure 4. Plot of inventory completeness (C) against sample size (N) for grid cells across Ghana. 
Red lines indicate criteria for “well-known” with respect to each of the axes.  
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Climatic differences from well-known cells were 
most pronounced in a broad swath of the northern 
part of the country (Figure 6).  

Combining these two views identified sites that 
are both geographically remote and environmentally 
different from well-known sites (Figure 6). Four 
areas fit these criteria: (1) northeastern Ghana, 
including the entire Upper West Region; (2) the 
north-central part of the Northern Region of the 
country around Tamale; (3) the west-central part of 
the country, including parts of the Brong-Ahafo 
Region around Bui National Park; and (4) the east-
central part of Ghana, including parts of the northern 
Volta Region and the Brong-Ahafo Region, 
including Digya National Park. 

  
DISCUSSION 

Access to primary biodiversity data is critical to 
addressing challenges of sustainable development 
and decision-making (Sousa-Baena et al., 2013). 
Most primary biodiversity data, in excess of 6.5 x 
108 data records, that have been shared openly are 
based on biological collections held in herbaria and 
museums, as well as observational data from citizen 
scientists. Our focus on DAK emphasizes data that 
are available to the broader scientific community for 
analysis and exploration (Sousa-Baena et al. 2013), 
such that biological collections for which associated 
data have not been digitized or that are digital but 
remain broadly unavailable are ignored (Costello et 
al., 2013). In contrast, information that is open and 
accessible has potential to impact science and 
conservation, as well as the care and curation of 
specimens (Sousa-Baena et al. 2013), such that 
digitization and sharing of primary biodiversity data 
is much to be encouraged (see Article 17, 
Convention on Biological Diversity). 

Knowledge of inventory completeness is 
important to determine appropriate levels of 
confidence that can be applied to data-derived 
patterns of biodiversity across a region or a taxon 
(Soberón and Llorente, 1993; Colwell and 
Coddington, 1994; Gotelli and Colwell, 2001). 
Recent analyses have attempted to summarize the 
state of knowledge of plant diversity (Kier et al., 
2005; Mutke and Barthlott, 2005), but few of these 
studies are based on primary biodiversity data 
(Soberón et al., 2000; Ariño et al., 2012; Sousa-
Baena et al. 2013). Such studies have generally 
indicated high species richness at small numbers of 
well-sampled areas, and few sites that are well-

known and comprehensively documented, but broad 
areas that remain poorly sampled. Particularly 
perplexing is when high species richness sites 
correspond closely to sites of high sampling 
intensity, as such situations suggest that “hotspots” 
in fact represent artifacts of incomplete sampling 
(Tobler et al., 2007; Ahrends et al., 2011).  

In Ghana, few studies have evaluated the state of 
knowledge of distributions of plants; the few studies 
existing focused in the forest vegetation zone in the 
southern parts of the country, based on both 
herbarium records and observations from sampled 
plots, and characterized species’ distribution patterns 
(Hall and Swaine, 1981; Hawthorne and Abu-Juam, 
1995). Although the savanna vegetation zone covers 
about two-thirds of Ghana, no assessment has 
addressed knowledge of distributions of plants there. 
This study is also the first to be based on digital 
records that are openly accessible to the broader 
scientific community. Although DAK for Ghanaian 
plants should improve with time, both in quantity 
and quality, numbers of new collections have been 
decreasing steadily over recent years. 

DAK completeness focuses on the consistency 
of information that is available, and offers a useful 
index about why a site has few or many species 
recorded (Soberón et al., 2000; Sousa-Baena et al. 
2013). Here, we addressed questions about sites in 
Ghana where biodiversity knowledge is relatively 
reliable versus where information is incomplete. We 
found well-known sites principally in southeastern 
Ghana relatively close to the location of the Ghana 
Herbarium, where botanists and students have 
developed intensive collections. Southwestern 
Ghana is considered richest in terms of plant species 
in Ghana (Hawthorne and Abu-Juam, 1995); as a 
consequence, many botanists and indeed many 
large-scale projects have collected plants from the 
area. In northwestern Ghana, extensive plant 
collections have been undertaken around Mole 
National Park, such that that area is botanically well 
known. In this study, we identified knowledge gaps, 
and characterized them in terms of geographic 
distance and environmental difference from well-
known sites, and see these sites as priority areas for 
botanical sampling. These gaps frequently result 
from no previous collecting visits to sites, but may 
in some cases reflect lack of digital access to 
collections that in truth exist (Sousa-Baena et al. 
2013). 

Most herbaria in Ghana now have their data 
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Figure 5. Geographic patterns of inventory completeness across Ghana based on ½° grid squares. 
Shading indicates inventory completeness (C), in a spectrum from violet (as low as 0) to red-brown 
(as high as 0.63). Thick dashed black outlines indicate those grid squares that fit the “well-known” 
criterion of C ≥ 0.4 and ≥1000 records. 
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Figure 6. Visualization of geographic distance of ½° pixels across Ghana from well-known sites; 
climatic difference of ½° pixels across Ghana from well-known sites based on nearest-neighbor 
distance; and a combination of the two distances based on equal minimum-maximum scaling.  
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records in digital formats and openly available: 
~80% of herbarium specimen sheets have been 
captured, although carpological and other collections 
remain to be digitized. In addition, many specimens 
of Ghanaian provenance are deposited in collections 
in other countries and remain to be digitized and 
shared. As such, the fastest way to improve DAK of 
Ghanaian plants is to fix data “leaks” among 
existing digital data records (Sousa-Baena et al. 
2013). In particular, of the 53,509 records analyzed 
herein, 60 (0.1%) records had indeterminate names, 
24,710 (46.2%) records had incomplete dates 
(missing year, month, or day), and 538 (1.0%) 
records lacked geographic coordinates, such that 
these records could not be included in our analyses. 
Another area of importance in terms of DAK 
improvement are the large amounts of botanical data 
associated with significant collections of Ghanaian 
plants held elsewhere in the world. Data repatriation 
from European and North American herbaria with 
large collections from Ghana is an important 
potential source of DAK of Ghanaian plants. 
Collaborative efforts linking West African botanists, 
and North American and European herbaria are now 
underway2, and promise to develop and enable rich 
new DAK resources. 

This study illustrates the importance of assessing 
completeness of DAK for prioritizing botanical 
surveys based on existing knowledge and benefits to 
be reaped from biodiversity data sharing and 
integration. Field sampling efforts should focus in 
areas identified herein as both environmentally 
different and geographically distant from well-
known sites. Such information exists for only a few 
countries, such as Brazil (Sousa-Baena et al. 2013, 
Idohou et al. 2015, Koffi et al. 2015). This kind of 
information is important for strategic national policy 
(Soberón and Peterson, 2009), and is an important 
step towards meeting the Aichi Targets3 and national 
commitments to the Clearing House Mechanism of 
the Convention on Biological Diversity4.  
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